
CS106B
Winter 2017

Handout #19
February 22, 2017

Assignment 5: Priority Queue

Priority queue assignment by Julie Zelenski and Jerry Cain with edits by Keith Schwarz.

Now that we've started discussing class implementation techniques, it's time for you to implement your
own collection class: the priority queue. A priority queue is a modified version of a queue in which ele-
ments are not dequeued in the order in which they were inserted. Instead, elements are removed from the
queue in order of priority. For example, you could use a priority queue to model a hospital emergency
room: patients enter in any order, but more critical patients are seen before less critical patients. Similarly,
if you were building a self-driving car that needed to process messages from multiple sensors, you might
use a priority queue to respond to extremely important messages (say, that a pedestrian has just walked in
front of the car) before less important messages (say, that a car two lanes over has just switched on its
turn signal).

In the course of this assignment, you will implement a priority queue in several different ways. In doing
so, you will learn to master linked lists and dynamic allocation, and will construct a powerful collection
class that will serve as a critical building block in later assignments.

You have a lot of time to complete this assignment, so make sure that you’re not putting it off to the last
minute. Here’s a rough timetable that we think should be pretty manageable:

• Read over this handout to see what questions are asked as soon as you get it.

• Complete Implementation One (Vector) on Wednesday, February 22nd (the day this assignment
goes out). You don’t need to write much code, and doing this will help you get acclimated to the
assignment.

• Complete Implementation Two (Singly-Linked List) by Friday, February 24th.

• Complete Implementation Three (Doubly-Linked List) by Monday, February 27th.

• Complete Implementation Four (Binary Heap) by Wednesday, March 1st.

• Clean up your solutions and implement extensions by Thursday, March 2nd, and submit later that
evening.

This assignment does not require much code, but that code is going to require a good amount of pointer
gymnastics. Proceed slowly and carefully, drawing a lot of pictures as you go. Ask questions when you
have them, and make generous use of the debugger. When something doesn’t work, don’t add in new code
– instead, debug the code you have and make sure you’re rock solid on what errors you’re getting. If you
proceed deliberately and thoughtfully, we think you’ll find that this assignment isn’t nearly as complex as
it might initially seem.

Due Friday, March 3rd at the start of class.

You are encouraged to work in pairs on this assignment.
Just don’t split the work cleanly in half if you do. ☺

The Priority Queue at a Glance
In this assignment, you will be implementing a priority queue class that stores strings. You can enqueue
strings in any order you wish. Whenever you extract a string from the priority queue, the priority queue
will remove and return the lexicographically first string in the queue (“lexicographically first” is the fancy
computer-scientist way of saying “alphabetically first”). For example, suppose you insert these five strings
into a priority queue:

“Goldilocks,” “Mama bear,” “Papa bear,” “Baby bear”

If you were to then dequeue the strings, they would be returned in this order:

 “Baby bear,” “Goldilocks,” “Mama bear,” “Papa bear”

Fortunately, if you compare strings using C++'s built-in relational operators (<, >, <=, etc.), the compar-
isons are done lexicographically.

The priority queue interface contains these five operations:

• size: Returns how many elements are in the priority queue.

• isEmpty: Returns whether the priority queue is empty.

• enqueue: Inserts an element into the priority queue.

• peek: Returns, but does not remove, the lexicographically first string in the queue. If the queue is
empty, peek calls the error function to report an error.

• dequeueMin: Returns and removes the lexicographically first string in the queue. If the queue is
empty, dequeueMin calls the error function to report an error.

The Assignment
As you have seen in lecture, there are multiple ways to implement each of the collections classes. Your
assignment is to implement a priority queue class in four different ways. Those are:

• Unsorted Vector. The elements in the priority queue are stored unsorted in a Vector.

• Sorted singly-linked list. The elements are stored in a sorted, singly-linked list.

• Unsorted doubly-linked list. The elements are stored in an unsorted, doubly-linked list.

• Binary heap. The elements are stored in a binary heap, a specialized data structure well-suited to
priority queues.

While you are free to write these implementations in any order that you wish, we strongly suggest imple-
menting them in the above order.

Implementation One: Unsorted Vector
Your first implementation of the priority queue will be backed by an unsorted Vector. This implementa-
tion is one of the simplest, and is designed to help you acclimate to class design and our testing harness.

Inside the VectorPQueue.h, you will find the interface for a VectorPriorityQueue class. Your task is
to implement the methods exported in this header file. To do so, you will need to define the private
fields inside the class and to implement the class's methods in the VectorPQueue.cpp source file.

Representing a priority queue with an unsorted Vector is reasonably straightforward. Whenever an ele-
ment is enqueued into the priority queue, you simply append it to the underlying Vector. For example,
suppose you enqueue these five strings in order:

2 / 16

“Jackie,” “Tito,” “Jermaine,” “Marlon,” “Michael”

The Vector would then look like this:

Jackie Tito Jermaine Marlon Michael

To dequeue a string from the priority queue, you simply scan across the Vector to determine which
string comes lexicographically first, remove that string from the Vector, then return it. For example, call-
ing dequeueMin on the above priority queue would return “Jackie” and leave the priority queue like this:

Tito Jermaine Marlon Michael

Calling dequeueMin a second time would return “Jermaine” and leave the priority queue as follows:

Tito Marlon Michael

We have provided you with a test harness in Main.cpp. This testing code contains two important tools.
First, it contains an interactive testing environment in which you can issue individual commands to your
priority queue. This is designed to let you test your priority queue on specific inputs. Once you are com-
fortable that your priority queue works correctly, you can run our more elaborate automated test suite.
This will push your class implementation hard by running numerous tests specifically designed to smoke
out edge cases. If your class passes these tests, it probably works correctly.

If you pull up the VectorPQueue.h header file, you’ll notice that whenever we’ve mentioned the string
type, we’ve referred to it as std::string instead of just plain old string. It turns out that the “real”
name of the string type is std::string. Normally, you haven’t seen this because you’ve had the line
using namespace std; at the top of all of your files. The convention in header files, though, is to not
add the line using namespace std; in header files, and so throughout the header file whenever you
need to refer to the string type you’ll have to use its full name std::string. Keep an eye out for this
when you’re defining the data members of the VectorPriorityQueue class, since you’ll likely need to
use std::string’s full name in the course of doing so. Outside of the header file and in the .cpp file,
though, we have included the line using namespace std;, so you’re free to just call it string without
the fancy std:: prefix.

After you have implemented the VectorPriorityQueue, take a minute to think over these questions,
then update the comments in the header file with your answers.

• What is the best-case runtime, in big-O notation, of inserting an element into the priority queue?
What is the worst-case runtime?

• What is the best-case runtime, in big-O notation, of removing an element from the priority queue?
What is the worst-case runtime?

• You can sort a sequence of elements by inserting them all into a priority queue, then removing
them one at a time. If you use the VectorPriorityQueue as your priority queue for this, you will
end up with a well-known sorting algorithm. What sorting algorithm is it?

You will need to answer these questions in order to receive full credit on this assignment.

3 / 16

Implementation Two: Sorted Singly-Linked List
When backing the priority queue with an unsorted Vector, insertions are fast but dequeues are expensive.
An alternative approach would be store the elements in the priority queue in sorted order. This increases
the time required to insert something into the priority queue, but decreases the amount of work you have
to do to find the next element to remove; after all, the smallest element will be right at the front of the se-
quence.

For your next task, you will implement the priority queue as a sorted, singly-linked list. That is, you will
store the elements in a linked list and enforce that the elements are always stored in sorted order. The
header SinglyLinkedListPQueue.h contains the interface for the SinglyLinkedListPriorityQueue
class. Your should implement this class by adding the appropriate fields, methods, and types to the pri-
vate section of this class, then implementing the member functions in SinglyLinkedListPQueue.cpp.

To better understand how this class should be implemented, suppose that you were to insert the following
three strings into the LinkedListPriorityQueue:

“Primrose Everdeen,” “Katniss Everdeen,” “Peeta Mellark”

The final priority queue would have this shape:

Katniss
Everdeen

Peeta
Mellark

Primrose
Everdeen

Notice that the elements are in sorted order, even though they weren't added in this order.

If you then insert the string “Gale Hawthorne,” the priority queue will contain the following:

Katniss
Everdeen

Peeta
Mellark

Primrose
Everdeen

Gale
Hawthorne

If you now insert “Haymitch Abernathy,” then the priority queue will contain

Katniss
Everdeen

Peeta
Mellark

Primrose
Everdeen

Gale
Hawthorne

Haymitch
Abernathy

Dequeuing an element from this priority queue is reasonably straightforward. Since the elements of the
priority queue are stored in sorted order, you can just remove the first cell from the linked list and return
its contents. For example, dequeuing from the above priority queue would yield “Gale Hawthorne” and
leave the priority queue structured as

Katniss
Everdeen

Peeta
Mellark

Primrose
Everdeen

Haymitch
Abernathy

The hardest part of the implementation is determining how to insert an element into the linked list. You
will have to search the list for the first element whose value is greater than the new value. For example, to
insert “Madge Undersee” into the above linked list, you would determine that it needs to be inserted be-
fore “Peeta Mellark,” as shown here:

4 / 16

Katniss
Everdeen

Peeta
Mellark

Primrose
Everdeen

Haymitch
Abernathy

Madge
Undersee

However, in order to splice the new node into the list, you have to change the next pointer in the preced-
ing cell – Katniss Everdeen – so that it points to the new node. To do so, we suggest that you implement
your insertion function by iterating across the linked list and keeping track of two pointers: one for the
current element, and one for the element just before that in the sequence. That way, when you find where
the new element should go, you can splice it into the list by updating the preceding cell.

After you implement the SinglyLinkedListPriorityQueue, think about the following questions. As
before, submit your answers by editing the comments at the top of the header file:

• What is the best-case runtime, in big-O notation, of inserting an element into the priority queue?
What is the worst-case runtime?

• What is the best-case runtime, in big-O notation, of removing an element from the priority queue?
What is the worst-case runtime?

• You can sort a sequence of elements by inserting them all into a priority queue, then removing
them one at a time. If you use the LinkedListPriorityQueue as your priority queue for this,
you will end up with a well-known sorting algorithm. What sorting algorithm is it?

5 / 16

Implementation Three: Unsorted Doubly-Linked List
An alternative representation of a linked list is a doubly-linked list, in which each cell stores two pointers –
one to the next cell in the list, and one to the previous cell in the list. That way, given a pointer to any cell,
you can advance to the next or previous elements by just following a single pointer. (Doubly-linked lists
are covered in Section Handout 6, in case you’d like a more detailed introduction.)

In the third part of this assignment, your job is to implement the priority queue as an unsorted, doubly-
linked list. Whenever a new element is enqueued into the priority queue, you should prepend it to the
linked list. For example, if you were to insert the strings

“Marten Reed,” “Faye Whitaker,” “Dora Bianchi”

into the doubly-linked list priority queue in that order, the priority queue would hold

Dora
Bianchi

Faye
Whitaker

Marten
Reed

(Do you see why?)

To dequeue the minimum element from the priority queue, you can scan across the linked list to deter-
mine where the minimum element is. You then remove that element from the doubly-linked list and re-
turn it. Since the list is doubly-linked, you can splice the cell out of the list without having to use a sepa-
rate pointer to keep track of the previous element. You will probably want to draw some pictures of how
exactly you will splice the cell out of the linked list before you code it up.

The header file DoublyLinkedListPQueue.h contains the interface for the sorted, doubly-linked list pri-
ority queue. You should implement this class by adding a private section to the interface and imple-
menting the appropriate methods in the DoublyLinkedListPQueue.cpp source file.

After you implement the DoublyLinkedListPriorityQueue, think about the following questions. As
before, submit your answers by editing the comments at the top of the header file:

• What is the best-case runtime, in big-O notation, of inserting an element into the priority queue?
What is the worst-case runtime?

• What is the best-case runtime, in big-O notation, of removing an element from the priority queue?
What is the worst-case runtime?

• You can sort a sequence of elements by inserting them all into a priority queue, then removing
them one at a time. If you use the DoublyLinkedListPriorityQueue as your priority queue for
this, you will end up with a well-known sorting algorithm. What sorting algorithm is it?

6 / 16

Implementation Four: Binary Heap
Your final implementation of the priority queue will be backed by a binary heap, a fast and clean data
structure optimized for use in priority queues.

Binary heaps are best explained by example. Below is a binary heap containing the letters A through H:

Let's look at the structure of this heap. Each value in the heap is stored in a node, and each node has zero,
one, or two child nodes descending from it. For example, the node A has two children, holding C and B,
while the node E has just one child (F) and the node G has no children at all.

In a binary heap, we enforce the rule that every row of the heap, except for the last, must be full. That is,
the first row should have one node, the second row two nodes, the third row four nodes, the fourth row
eight nodes, etc., up until the last row. You can see this in the above example – the first three rows are all
filled in, and only the last row is partially filled. Here are two other examples of binary heaps, each of
which obey this rule:

Inside a binary heap, we also enforce one more property – no child node comes lexicographically before
its parent. All three of the heaps you've seen so far obey this rule. However, there are no guarantees about
how strings can be ordered within a row; as you can see from the examples, within a row the ordering is
pretty much arbitrary.

If the elements of a priority queue are stored in a binary heap, it is easy to read off which element is the
smallest – it's the one at the top of the heap. It is also efficient to insert an element into a binary heap.
Suppose, for example, that we have this binary heap:

7 / 16

Let's add the string “Gil” to this heap. Since a binary heap has all rows except the last filled, the only
place we can initially place Gil is in the first available spot in the last row. This is as the left child of Lu-
crezia, so we place the new node for Gil there:

At this point, the binary heap is invalid because Gil lexicographically precedes Lucrezia. To fix this, we
run a bubble-up step and continuously swap Gil with its parent node until it is in its proper place. This
means that we exchange Gil and Lucrezia, as shown here:

At this point we are done. We now have a binary heap containing all of the original values, plus Gil.

Let's suppose that we now want to insert the string “Dupree” into the heap. We begin by placing it at the
next free location in the last row, which is as the right child of Gil:

8 / 16

We then bubble Dupree up one level to fix the heap:

And, again, have a new heap containing these elements. As a final example, suppose that we want to insert
“Othar” into this heap. We begin by putting it into the first free spot in the last row, which in this case is
as the left child of Zeetha. This is shown here:

We now do a bubble-up step. We first swap Othar and Zeetha to get

9 / 16

And then swap Othar and Tarvek to get

This step runs very quickly. With a bit of math we can show that if there are n nodes in a binary heap,
then the height of the heap is at most O(log n), and so we need at most O(log n) swaps to put the new ele-
ment into its proper place. Thus the enqueue step runs in time O(log n).

We now know how to insert an element into a binary heap. How do we implement dequeue-min? We
know that the minimum element of the binary heap is atop the heap, but we can't just remove it – that
would break the heap into two smaller heaps. Instead, we use a more clever algorithm. First, we swap the
top of the heap for the very last node in the heap, as shown here:

Zeetha

Othar Dupree

Tarvek Zola Lucrezia Gil

Agatha

10 / 16

Now, we can remove Agatha from the heap. This leaves:

Zeetha

Othar Dupree

Tarvek Zola Lucrezia Gil

Unfortunately, what we are left with isn’t a binary heap because the top element (Zeetha) is one of the
lexicographically last values in the heap. To fix this, we will use a bubble-down step and repeatedly swap
Zeetha with its lexicographically smaller child until it comes to rest. First, we swap Zeetha with Dupree
to get this heap:

Since Zeetha is not at rest yet, we swap it with the smaller of its two children (Gil) to get this:

And we're done. That was fast! As with enqueue, this step runs in time O(log n), because we make at
most O(log n) swaps. This means that enqueuing n elements into a binary heap and then dequeuing them
takes time at most O(n log n). This method of sorting values is called heapsort.

How do we represent a binary heap in code? You might think that, like a linked list, we would implement
the heap as cells linked together with pointers. This implementation, while possible, is difficult. Instead,
we will implement the binary heap using nothing more than a dynamic array.

“An array‽,” you might exclaim.* “How is it possible to store that complicated heap structure inside an ar-
ray?” The key idea is to number the nodes in the heap from top-to-bottom, left-to-right. For example, we
might number the nodes of the previous heap like this:

* That's an interrobang you're looking at – a combination of an exclamation point and a question mark. Crazy, isn't it‽

11 / 16

This numbering system has some amazing properties:

• Given a node numbered n, its children (if any) are numbered 2n and 2n + 1.

• Given a node numbered n, its parent is numbered n / 2, rounded down.

You can check this yourself in the above tree. That's pretty cool, isn't it? The reason that this works is that
the heap has a rigid shape – every row must be filled in completely before we start adding any new rows.
Without this restriction, our numbering system wouldn't work.

Because all of our algorithms on a binary heap only require us to navigate from parent to child or child to
parent, it's possible to represent binary heap using just an array. Each element will be stored at the index
given by the above numbering system. Given an element, we can then do simple arithmetic to determine
the indices of its parent or its children.

For example, we might encode the above heap using the following array:

Dupree

Othar Gil

Tarvek Zola Lucrezia Zeetha

1

2 3

4 5 6 7

Dupree Othar Gil Tarvek Zola Lucrezia

Zeetha

Zeetha

1 2 3 4 5 6 7

The enqueue and dequeue-min algorithms we have developed for binary heaps translate beautifully into
algorithms on the array representation. For example, suppose that we want to insert the string “Krosp”
into this binary heap. We begin by adding it into the heap, as shown here:

12 / 16

Dupree

Othar Gil

Tarvek Zola Lucrezia Zeetha

1

2 3

4 5 6 7

Krosp

8

Dupree Othar Gil Tarvek Zola Lucrezia

Zeetha

Zeetha Krosp

1 2 3 4 5 6 7 8

Notice that Krosp is at index 8, which is the last position in the array. This is not a coincidence; whenever
you add a node to a binary heap, it always goes at the end of the array.

We then bubble Krosp up into its final position by repeatedly comparing it to its parent. Since Krosp is at
position 8, his parent (Tarvek) is at position 4. Since and Krosp precedes Tarvek, we swap them:

Dupree

Othar Gil

Krosp Zola Lucrezia Zeetha

1

2 3

4 5 6 7

Tarvek

8

Dupree Othar Gil Krosp Zola Lucrezia

Zeetha

Zeetha Tarvek

1 2 3 4 5 6 7 8

Krosp's parent is now at position 2 (Othar), so we swap Krosp and Othar to get the final heap:

13 / 16

Dupree

Krosp Gil

Othar Zola Lucrezia Zeetha

1

2 3

4 5 6 7

Tarvek

8

Dupree Krosp Gil Othar Zola Lucrezia

Zeetha

Zeetha Tarvek

1 2 3 4 5 6 7 8

As your final implementation task for the assignment, you should implement the HeapPriorityQueue
class in the HeapPQueue.h and HeapPQueue.cpp source files. Although in practice you would layer this
class on top of the Vector, for the purposes of this assignment you must do all of your own memory
management. This means that you must dynamically allocate and deallocate the underlying array in
which your heap is represented.

One word of caution – in our examples, we assumed that the array was one-indexed. Remember that C++
arrays are zero-indexed. When implementing your binary heap, you must make sure to take this into ac-
count. There are many ways to do this – perhaps you will have a dummy element at the start of your ar -
ray, or perhaps you'll adjust the math to use zero-indexing – but be sure that you keep this in mind when
designing your implementation.

14 / 16

(Optional) Implementation Five: Build Your Own Priority Queue!
The four heap implementation strategies you will implement in this assignment are only a small sampling
of the myriad implementations of priority queues. There are a number of other priority queues that you
could implement, each of which shows off a different concept in data structures. Here are some thoughts
to help you get started:

• Build the binary heap faster. There’s a beautiful algorithm called heapify that can construct a bi-
nary heap in time O(n) in the worst case, compared with the O(n log n) worst-case behavior of in-
serting n elements into a binary heap. Research the heapify algorithm, code it up, write some
tests, and clock its performance. How does it compare to inserting n elements regularly?

• Implement a meldable priority queue. In some cases, it’s important to build priority queues that
can be efficiently combined together. For example, if you have a large organization trying to deter-
mine their institutional priorities, each group might put together a priority queue of their immedi-
ate priorities, and then each of those queues could be melded together to form a larger priority
queue. The binomial heap is an elegant priority queue implementation that supports fast melding,
as is the leftist heap and the randomized meldable heap.

• Implement a queue with decrease-key. In the examples we’ve chosen here, each element in the
priority queue is a string, and the strings are compared lexicographically. It’s more common to de-
sign priority queues in which elements are associated with a real-valued priority when they’re in-
serted and then sorted purely according to that priority. This allows you to support a special oper-
ation called decrease-key that takes a pointer to an element in the priority queue and a new prior-
ity, then lowers the element’s priority. This is used as a building block in fast implementations of a
number of different algorithms. The Fibonacci heap is a challenging data structure that supports
efficient melding and the decrease-key operation, and would be a rewarding one to implement,
and it’ll definitely push your limits with linked structures! The pairing heap is a more modern and
much simpler alternative to the Fibonacci heap that is still quite interesting to look at, both from a
programming and from a theoretical perspective. Fun fact: no one knows for sure how fast the
pairing heap is, though it’s known to be really fast in practice!

• Be creative! Got any ideas of your own? Feel free to code them up! We’d love to see what you
come up with – just be sure to document what you’re doing and give us some guideposts as we
read through your code!

15 / 16

Advice, Tips, and Tricks
Here are a few pointers that might make your life easier as you work through this assignment:

• Draw pictures! When manipulating linked lists, it is often helpful to draw pictures of the linked
list before, during, and after each of the operations you perform on it. Manipulating linked lists
can be tricky, but if you have a picture in front of you as you're coding it can make your job sub-
stantially easier.

• Don't panic! You will be doing a lot of pointer gymnastics in the course of this assignment, and
you will almost certainly encounter a crash in the course of writing your program. If your pro-
gram crashes, resist the urge to immediately make changes to your code. Instead, look over your
code methodically. Use the debugger to step through the code one piece at a time, or use the pro-
vided testing harness to execute specific commands on the priority queue. The bug is waiting there
to be found, and with persistence you will find it. If your program crashes with a specific error
message, try to figure out exactly what that message means. Don't hesitate to get in touch with
your section leader, and feel free to stop by the LaIR or office hours.

• Test thoroughly! We have provided you a fairly comprehensive testing system that you can use to
verify your code. When you run the provided starter code, you will have the option to manually or
automatically test all four of the priority queue implementations (plus the optional extra fifth). The
manual tests are good for initial debugging; they allow you to directly issue commands to the pri-
ority queue and see what happens. Once you're comfortable that your implementation is mostly
correct, you can run the automated tests. The automated tests will subject your priority queue to a
battery of tests that will cover a lot of cases. We cannot guarantee that our automatic tests will
cover every case, though, and you're strongly encouraged to add your own testing code.

Submission Instructions
Once you’ve gotten everything working, go through our Assignment Submission Checklist (up on the
course website) and make sure you’ve done everything that you need to do. Then, submit the .cpp and .h
files for each of the priority queue types you’ve implemented. If you’ve made any edits in Main.cpp, be
sure to submit that as well. And that’s it! You’re done!

Good luck, and have fun!

16 / 16

